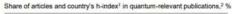
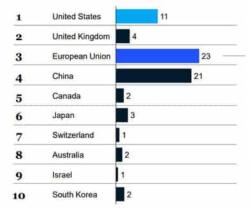


EC perspectives and introduction to EU investments in quantum technology

Gustav Kalbe Acting Director DG CNECT C - Digital Excellence and Science Infrastructure European Commission


Quantum in Europe over the years



Quantum Excellence: Europe (EU+MS) and the rest of the world

Scientific Publications

Top 10 countries worldwide 2020, by h-index

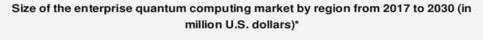
China and the European Union have announced the most public funding planned for QC efforts; Germany has announced most in EU.

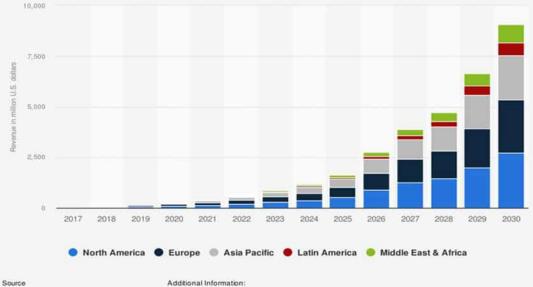
S billion	anned governmental funding ¹		EU public funding sources, %
China		15.3	121
European Union	7,2		12.1 2.5
United States	1.9		
Japan	t.B		40.6
Inited Kingdom	1/3		
India	1.0		
Canada	1.0		
Russia	0.7		29.4
Israel	0.5		
Singapore	0.3		Germany III Netherlands
Australia	0.2		European Union 🔳 Others
Others	0.1		

China increased its quantum-related patent activity across all technologies.

Share of quantum patents by company's HQ country, 2000-21,1 %

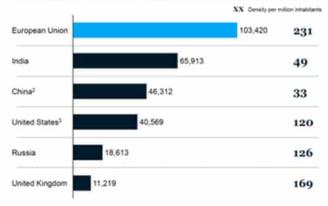
reliminary		QC	QComms	QS
China	53.8	54.1	46.2	59.7
Japan	15.2	15.4	18.4	14.8
European Union	11.2	11.5	10.0	14.8
United States	10.0	9.6	6.5	4.5
South Korea	4.0	3.9	6.2	3.4
Taiwan	1.8	1.8	4.5	2.3
United Kingdom	1.2	1.0	3.4	0
Canada	0.8	0.6	1.6	0
Switzerland	0.6	0.6	1.0	o
Russia	0,6%	0,6%	0,5%	0%


Source: Integraphy: expert interviews; Mitkinsey analysis


- EU is home to 25% of the global number of QT companies
- 2010: 10 companies
 2020: > 70 companies
 2022: > 150 companies
- A growing nr of start-ups!

Prospects for Quantum Technologies: Markets and Jobs

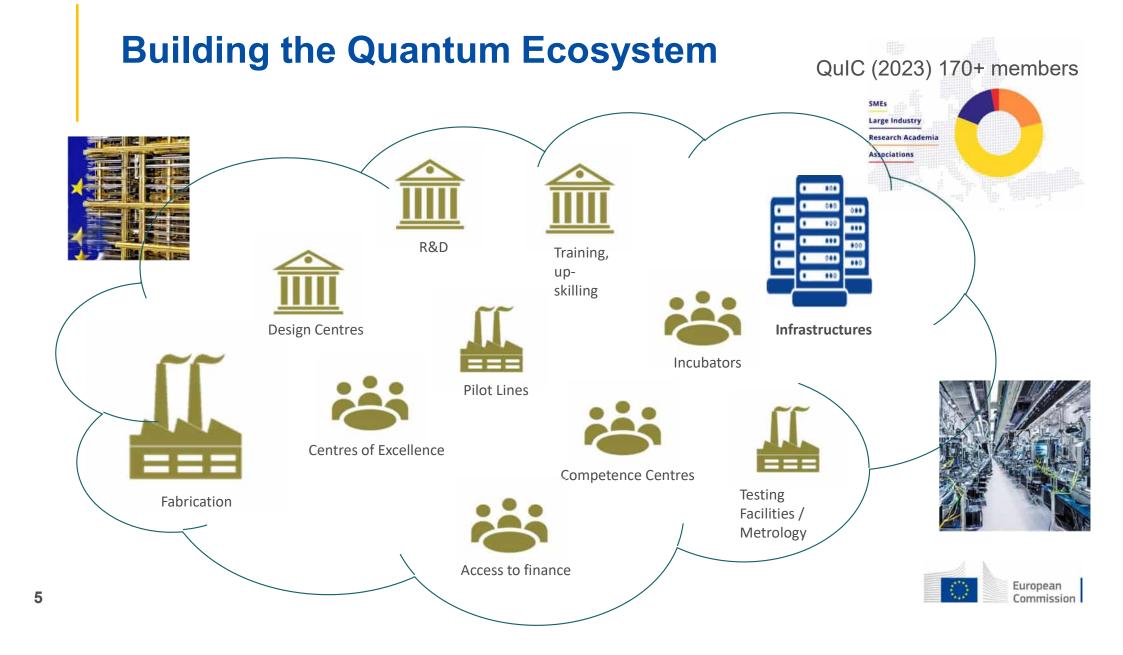
QT Markets: Exponential growth!

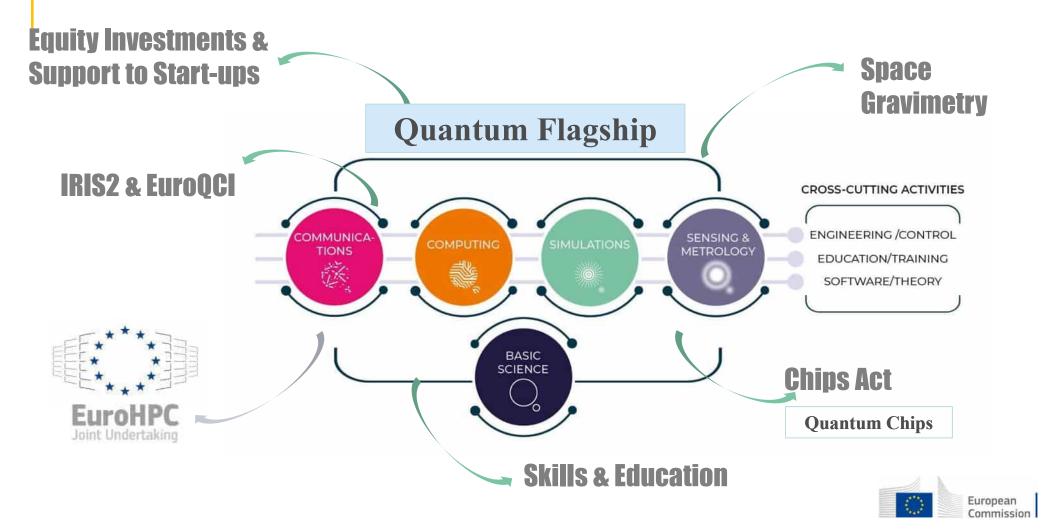

Tractica © Statista 2021

Worldwide: Africa: North America: Europe: Central and South America: APAC: MENA, 2017 to 2018

Concentration of QT Talent

The European Union has the highest concentration of QT talent. Absolute number of graduates in QT-relevant fields,1 2019




3. Chalkables of master's level or equivalent in 2019 in biochemicity, othermolty, electronics, and chemical engineering, information and communication talogy, mathematics and elations, and physics. High-level extinues

1 The actual speed point for the United States may be larger, as bothetic programs are longer and messer's programs are loss con-Source National government vebsteel, OECD, McKinsey analysis

Quantum in Europe: state of play (2/2)

Quantum Flagship A Success story

21 innovation- and science-driven projects and 3 coordination actions 175 million EUR funding since 2016

1,654 scientists and experts from 236 collaborating organisations in 31 European countries

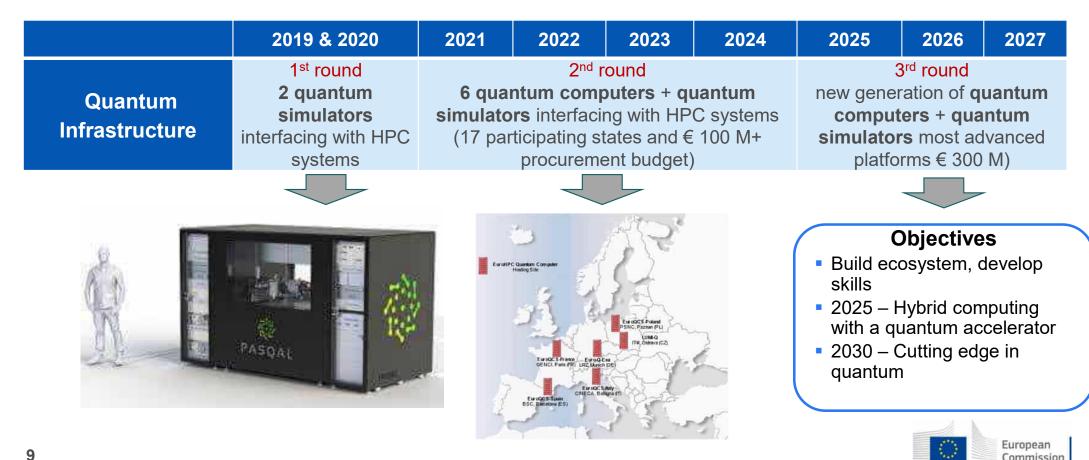
1,313 scientific papers published (further 223 under review), 105 patents filed and 25 start-ups founded

Quantum Flagship success stories

For a secure digital society and a quantum enabled internet

Simulating complex systems for advanced design and development

Bringing accuracy and performance to unprecedented levels



Addressing foundational challenges for development of quantum technologies

- ✓ World-leading advances in cont. variable QKD
- High efficiency and multiplexed quantum memories
- ✓ Development of advanced systems' components
- Next gen atomic-based programmable Quantum Simulators
- Practical quantum advantage
- Pan-European hybrid HPC/quantum infrastructure (100 qubit analogue sims at FZJ and GENCI)
- Diamond quantum sensors (automotive, medical imaging)
- ✓ First quantum sensors in space
- ✓ New MEMS-based quantum sensors
- Next gen integrated/compact
 optical quantum clocks
- ✓ 50 qubit trapped-ions
 Quantum Computer
 (with low power
 consumption at 1.5KW)
 deployed and online
- ✓ 25 superconducting qubit device with 99% 2-qubit gate fidelity built
- World record tuneability of photon emitters
- ✓ New single photon detectors
- ✓ High-fidelity quantum gates with microwave-driven ions
- ✓ Compact entangled photon-based light sources
- ✓ Detection and control of single rare earth ions

8

Quantum in Europe: Computing Infrastructure

Quantum in Europe: IRIS² and EuroQCI

EuroQCI space segment

under rescheduling!

Eagle 1 – LEO satellite for in orbit demonstration and early tests

• ESA & SES Astra Consortium funded – Eagle 1 launch in DEC 2025(?)

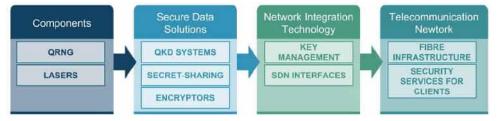
1st Generation - deployment of LEO satellites with EU technology

- A small number of satellites funded by ESA/EU
- Exchange quantum keys between different sites on EU territory interconnected LEO satellites + ground stations + terrestrial systems

2nd Generation - deployment of a fully operational system integrated with IRIS² for secure connectivity

• Full coverage of user and security requirements

EuroQCI terrestrial segment

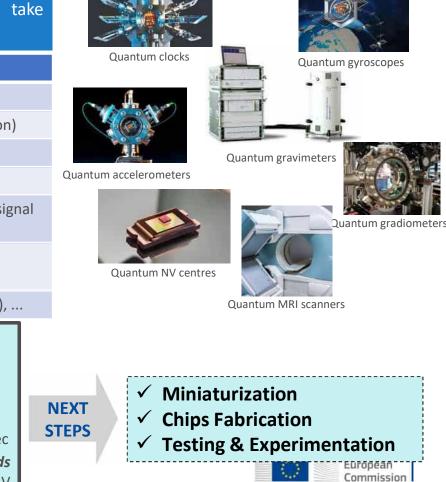


26 Member States deploy national QCIs as of JAN 2023

- Aim: Initiate MS in QKD use, test architectures, develop use cases, develop skills and prepare for full deployment
- 265 participants (incl. 34 SMEs), >60 use cases (finance, healthcare, defence, industry, research, etc.)

6 Industry projects for maturing EU QCI technologies:

- QKD systems ready for integration into telecom networks
- QKD modules (QRNG, optical components), key management software, encryptors, QKD protocols

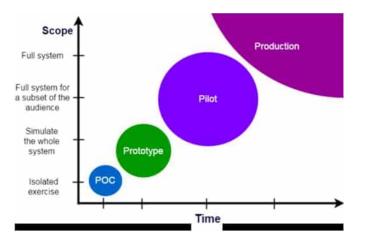

Quantum Sensing in the EU

Sensors with increased sensitivity and precision able to capture many physical quantities (magnetic field, radiofrequency field, gravitation, movement...), or that can take measurements even in harsh conditions (e.g. high pressure and temperature)

Quantum Sensors	Applications
QT-enhanced MRI	Heart and brain imaging, spectroscopy (molecular imaging)
Accelerometers	Atom interferometry to measure accelerations (satellite-free navigation)
Gradiometers	 NV-centres to measures gradients, such as a magnetic field or gravity
Gyroscopes	 Position for automated driving or indoor navigation
Atomic clocks	 GPS that works even underground and inside, communication (radar signal amplification)
Gravimeters	 Environmental/infrastructure monitoring (volcanoes, CO2 emissions) Surveying (finding water basins and oil and gas reserves)
Other	• Measure temperature, electrical field, RF-field (wide-range frequency),

European landmark achievements (2018-2021)

- Metabolic microscope x100,000 more sensitive than state of the art
- Quantum polarizer enhancing MRI signal x10,000 at room temperature
- Optical lattice clock off by only one second over the age of the universe
- Imaging sensors for THz waves with 1mm spatial resolution and acquiring of 20 000 frames / sec
- Some of the world's most advanced q. sensors based on *NV centres in ultrapure diamonds* (cryogenic scanning probe system, spectrum analysers with extended bandwidth, NV magnetometers under extreme pressure, etc)



Quantum Flagship: Fostering Industrial Uptake of QT

Deploying pilot production and testing capabilities for QT.

Key goals:

Qu-Pilot: Establish engineering methods and processes that are scalable at industrial level

Qu-Test: Establish a (open-access) network of QT testing and experimentation infrastructure for the needs of industry

Leverage EU facilities that offer such scalable methods, processes in pilot scale, and testing and experimentation services to all EU 27

 \rightarrow Essential for the success of the European businesses enabling QT in all the application areas 12

Thank you